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Abstract—Recently, there has been a growing interest in
learning-based semantic communication because it can prioritize
the preservation of meaningful semantic information over the
accuracy of the transmitted symbols, resulting in improved
communication efficiency. However, existing learning-based ap-
proaches still face limitations in defining semantic level loss
and often struggle to find a good trade-off between preserving
semantic information and preserving intricate details. In addi-
tion, the existing semantic communication approaches cannot
effectively train semantic encoders and decoders without the
support of downstream models. To address these limitations,
this paper proposes a contrastive learning (CL)-based semantic
communication system. First, inspired by practical observations,
we introduce the concept of semantic contrastive loss and propose
a semantic contrastive coding (SemCC) approach that treats data
corruption during transmission as a form of data augmentation
within the CL framework. Moreover, we propose a semantic
re-encoding (SemRE) operation, which uses a duplicate of the
semantic encoder deployed at the receiver to guide the entire
training process when the downstream model is inaccessible.
Further, we design the training procedure for SemCC and SemRE
approaches, respectively, to balance the semantic information
and intricate details. Finally, simulations are performed to
demonstrate the superiority of the proposed approaches over
competing approaches. In particular, our approaches achieve a
significant accuracy improvement of up to 53% on the CIFAR-
10 dataset with a bandwidth compression ratio of 1/24, and also
obtain comparable image reconstruction quality as the bandwidth
compression ratio is improved.

Index Terms—Semantic communication, contrastive learning,
joint source-channel coding, image transmission.

I. INTRODUCTION

A. Backgrounds
The goal of digital communication system has been to

reliably transmit bits through noisy channels, which is typ-
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ically categorized as the technical level of communication.
The classical information theory proposed by Shannon [2],
provided the fundamental principle for achieving this goal,
which introduced the concept of channel capacity to provide a
theoretical upper bound on the data rate that ensures error-free
transmission. Researchers have made considerable efforts to
approximate the channel capacity by developing the advanced
channel coding techniques such as low-density parity check
(LDPC) [3] and polar code [4] in the 5G New Radio (NR).
While modern digital communication systems based on these
approaches have achieved remarkable progress, they do not
explicitly consider the underlying meaning of the transmitted
data and therefore treat all bits as equal, which may lead to
challenges in future applications.

In the upcoming Beyond 5G (B5G) and 6G networks,
a large number of Internet of Things (IoT) devices will
be deployed and various types of multimedia data will be
transmitted to support novel applications such as smart cities,
automated driving, virtual reality (VR), and augmented reality
(AR) [5]–[7]. However, the large number of connections,
data transfer requirements, and ultra-low latency demands will
place a significant burden on the network infrastructure. To
address these challenges, researchers are shifting their focus
to improving communication efficiency within the constraints
of available channel capacity. In this direction, the importance
and meaning behind the transmitted data are taken into account
in the system design, and the concept of semantic commu-
nication has attracted increasing attention [8]–[11]. Semantic
communication works under the semantic and effectiveness
level of communication, which aims to prioritize the preser-
vation of meaningful semantic information over the accuracy
of transmitted symbols, leading to improved communication
efficiency by transmitting only necessary information relevant
to the specific task at the receiver. These characteristics of
semantic communication can also better meet the requirements
of the aforementioned applications in B5G and 6G networks.

However, a major challenge in semantic communication
is how to effectively extract semantic information at the
transmitter while accurately reconstructing it at the receiver
under constrained communication conditions. While recent
efforts used advanced deep learning technologies in semantic
communication systems, there are still some issues that need
to be addressed, which are discussed below.

1) How to evaluate the loss of semantic level during
the training process: While the performance of a semantic
communication system can be effectively evaluated by the
downstream task, it is crucial to note that the direct use
of the loss functions of the downstream task, such as the
cross-entropy loss [12], may not fully match the intrinsic
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characteristics of semantic information, and may not guide
the training of semantic encoder and decoder well, which
could lead to a decreased effectiveness and robustness. Since
semantic information is closely related to the meaningful
content and contextual aspects of the data, these may be
overlooked by the specific labels predicted by the downstream
network and the use of cross-entropy loss. Therefore, it is
necessary to integrate the inherent properties of semantic
information into the semantic level loss.

2) How to train semantic encoders and decoders without
the help of a pre-trained downstream network: The semantic
communication system faces significant challenges in scenar-
ios where the receiver is prohibited from accessing not only the
weights but also the architecture of the downstream model (i.e.
the pre-trained downstream is black-box). This limitation is
due to encryption and other security measures, and it severely
hinders the simultaneous training of the semantic encoder and
decoder in [12]. One possible solution is to retrain a deep
neural network (DNN) that can act as a guide for training
the semantic encoder and decoder. However, it is important
to note that this solution introduces additional system cost
and complexity, which should be carefully considered in a
practical system. Moreover, if the chosen architecture of the
DNN differs from that of the pre-trained downstream model,
performance degradation may occur, which poses a challenge
to this solution.

3) How to make a good balance between preserving se-
mantic information and preserving intricate details: It is
vital to keep a good balance between preserving important
semantic information and retaining intricate details for a well-
designed semantic communication system. When the band-
width resource is limited, the system may prefer to trans-
mit the semantic information over intricate and fine-grained
details, and should progressively increase the level of detail
as the bandwidth availability improves. However, existing
approaches overemphasize semantic information, which results
in a loss of detail when the bandwidth resource is sufficient.

B. Motivation and Contributions

To address the above questions, we introduce the contrastive
learning (CL)-based semantic communication system. We start
with the first question by taking into account the inherent
properties of semantic information. In particular, when we
compare two unrelated entities, it becomes clear that their
semantic information has significant differences. In contrast,
the semantic information may not change much when a data
augmentation operation is performed on the original entity.
These observations can motivate us to incorporate the pop-
ular CL approach into semantic communication, since the
principles of CL align closely with those of the semantic
communication system and CL has demonstrated significant
achievements across various domains, including computer
vision [13]–[17], natural language processing (NLP) [18], and
multimodal applications [19]–[21]. More importantly, CL can
help improve the generalization ability and robustness of deep
models [22]–[25]. The works in [26], [27] first introduced
the concept into semantic communication systems to help

extract useful semantic information. However, these works still
face limitations in evaluating the semantic level loss when
these systems work in a noisy channel since they ignore
the fact that in an ideal semantic communication system, the
semantic information at the receiver should remain basically
unchanged from its state before transmission, while still being
distinguishable from those unrelated entities.

To this end, we propose the semantic contrastive coding
(SemCC) approach, which deeply explores the introduction of
CL process to the semantic communication system. Specif-
ically, we replace the conventional data augmentation pro-
cedure with a wireless transmission process. This change is
based on the idea that the distortion caused by the noise and
fading characteristics of the wireless channel during trans-
mission can be considered as a form of data augmentation.
Therefore, we design the semantic-level loss for SemCC to
ensure that the semantic distance between the original and
reconstructed images is small enough while maintaining a
considerable semantic distance between the reconstructed and
irrelevant images for better discrimination in the downstream
task.

To address the second question, we introduce the concept
of semantic re-encoding (SemRE), which is inspired by the
information bottleneck theory that only useful semantic in-
formation is allowed to pass through the semantic encoder.
When the semantic information is initially used for data
reconstruction, the reconstructed data, when passed through
the semantic encoder again, should ideally acquire the same
semantic information as the initial one, which can be defined
as idempotence in semantic communication. Therefore, the
key design in SemRE is to deploy a semantic encoder at
the receiver, which is copied from the one in the transmitter,
and use it to guide the training of the semantic encoder and
decoder.

Furthermore, we introduce training strategies to address the
third question in the context of our semantic communication
system. In particular, inspired by the approach presented in
[12], we introduce a loss function that includes both obser-
vation loss and semantic level loss, with a hyper-parameter
that controls the trade-off between these two components.
We also design a fine-tuning approach for situations with
an available downstream model, which aims to improve the
inference performance of the downstream task.

Finally, simulations are performed to demonstrate the supe-
riority of the proposed approaches over competing approaches.
Without losing generality, we follow the concept of semantic
communication in [9], [10] and focus on the specific tasks of
image reconstruction and image classification at the receiver
like [12]. In this context, we no longer pay attention to the
typical metric of the technical level of communication such as
bit error ratio (BER) and symbol error rate (SER). Instead, we
evaluate the system performance based on the effectiveness of
the received semantic information, using intrinsic task-related
metrics such as image quality and inference accuracy. We
compare the proposed approaches with the advanced semantic
communication system in [12], [28], as well as the classical
digital communication system. Simulation results show that
the proposed approaches can achieve leading accuracy perfor-
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mance in the downstream task under a range of bandwidth
compression ratios, and demonstrate remarkable adaptability
to both AWGN and Rayleigh fading channels with different
noise levels, and also make a good trade-off between the image
reconstruction quality and inference performance.

The main contributions of this paper are summarized as
follows,

• We propose the SemCC approach, which integrates the
concept of CL into semantic communication. By utilizing
wireless transmission as a form of data augmentation in
CL, SemCC ensures minimal semantic distance between
original and reconstructed images while maintaining dis-
crimination against irrelevant images.

• We introduce the SemRE approach, which uses a copy
of the semantic encoder deployed at the receiver to guide
the entire training process when the downstream model
is inaccessible.

• We design the training procedure for SemCC and SemRE
approaches, respectively, to balance the semantic infor-
mation and intricate details.

• We conduct simulations to demonstrate the superiority
of our approaches over existing methods in terms of in-
ference accuracy, across various bandwidth compression
ratios and channel conditions, and also obtain comparable
image reconstruction quality as the bandwidth compres-
sion ratio is improved. In particular, our approaches
achieve a significant accuracy improvement of up to 53%
on the CIFAR-10 dataset with a bandwidth compression
ratio of 1/24.

C. Structure

The rest of this paper is organized as follows. In Section
II, we provide an overview of related work on semantic
communication, including its theoretical foundations and prac-
tical applications. Section III introduces the system model of
semantic communication. In Section IV and V, we present the
implementation details of the proposed SemCC and SemRE
approach, respectively. Simulation results are provided in
Section VI. Finally, we conclude this work in Section VII.

II. RELATED WORKS

A. Basics on Theory of Semantic Communication

The authors in [29] defined the semantic information car-
ried by a sentence in terms of logical probability during
transmission. Building on Shannon and Weaver’s theory, the
authors in [8] introduced the concept of a semantic channel
and proposed a model-theoretic approach to reliable semantic
communication. In [30], the communication scenario between
two intelligent beings was discussed, and the theoretical
formulation of the goals of semantic communication was
presented to demonstrate the necessity of semantic commu-
nication. Subsequently, G. Guler et al. investigated a semantic
communication framework by considering the meanings of
transmitted codewords over a noisy channel, and optimized the
end-to-end average semantic error using a Bayesian approach
[31]. Based on the aforementioned works, the concept of

semantic information theory [32]–[36] has attracted increasing
research interest in recent years, providing the theoretical
foundation for the development of semantic communication
in various directions.

B. Transmission Strategy of Semantic Communication

With the rapid growth of deep learning technology, re-
searchers have started to explore the deployment of semantic
communication system with the help of powerful semantic
extraction provided by deep learning. In this direction, the
authors in [28], [37], [38] proposed a deep learning based joint
source-channel coding (DeepJSCC) for image data, where the
encoder and decoder were designed based on autoencoder
and jointly optimized for semantic information transmission
to achieve a good image reconstruction quality. Then, the
works in [39]–[41] extended DeepJSCC to different channel
conditions and improved the image reconstruction quality
under noisy channels. In addition, motivated by generative
models, some works incorporated generative adversarial net-
works (GANs) to further reduce bandwidth consumption. For
example, the authors in [42], [43] applied the GAN inversion
methods [44] to regenerate the image at the receiver, which
leads to significant improvements in communication efficiency.
In [45], a joint semantic encoding-modulation system has been
explored to facilitate the deployment of semantic communica-
tion in practical networks.

For text and speech data, the work in [46] extended Deep-
JSCC to reduce the BER while preserving the semantic infor-
mation in sentences. Leveraging the transformer architecture,
the authors in [47], [48] proposed a semantic communica-
tion approach for text, achieving a high semantic similarity
between transmitted and received sentences. Guo et al. [49]
explored the ability of pre-trained large language model (LLM)
such as ChatGPT to extract semantic information by intro-
ducing a cross-layer manager, thus achieving lower semantic
loss under limited bandwidth. In addition, the work in [50],
[51] explored the semantic communication system for speech
signals to reduce perceptual distortion.

C. Application of Semantic Communication

Not limited to data reconstruction at the receiver, semantic
communication has been applied to various application scenar-
ios to support the downstream task. In the work of [52]–[54],
semantic communication is used to transmit the output of the
mid-layer of a neural network (NN) to reduce the inference
latency with the help of an edge server. The authors in [12]
proposed a collaborative training framework for semantic com-
munication, where users could train their semantic encoder to
improve the performance of downstream vision inference tasks
under limited bandwidth. Moreover, in [55], [56], the authors
used semantic communication to support the Visual Question
Answering (VQA) task by extracting and transferring the
semantic information from the correlated multimodal data. The
authors in [57] applied semantic communication in the UAV
network, which enables efficient on-the-fly scene classifica-
tion. Yang et al. [58] also introduced semantic communication
into the complex vehicular networks, and jointly optimized the
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energy efficiency and semantic transmission reliability to sup-
port green V2V communication. The authors in [59] integrated
semantic communication in mobile edge computing (MEC)
network to support the efficient communication between the
edge server and the user equipment (UE), which helps reduce
the energy consumption.

III. SYSTEM MODEL

This paper investigates a semantic communication system,
where an NN-based semantic encoder and decoder are de-
ployed in the transmitter and receiver, respectively. More
specifically, we focus on the wireless image transmission in
this paper, and use x ∈ Rnc×nh×nw to denote the transmitted
source image, where nc, nh, and nw correspond to the number
of channels, height, and width of the image, respectively. To
simplify, let n = nc × nh × nw stand for the input dimension
of x.

The transmission process begins with the semantic encod-
ing, which is used to extract the semantic information of x
and directly realize the non-linear mapping from semantic
information into the k-dim complex-valued vector s̃ ∈ Ck,
given by

s̃ = Eθ1(x), (1)

where Eθ1(·) represents the semantic encoding operation with
parameter θ1. At this stage, it is important to consider the
relationship between the output dimension k and the input
dimension n in the context of the bandwidth constraint. Typ-
ically, k < n should be satisfied to the bandwidth constraint,
where k/n is referred to as the bandwidth compression ratio.
In particular, a large bandwidth compression ratio indicates
a favorable communication condition, while a small one
indicates a limited use of bandwidth. In addition, a power
normalization layer [28] is used at the end of the semantic
coding network to satisfy the average power constraint of P
at the transmitter, given by

s =
√
kP

s̃√
s̃∗s̃

, (2)

where s is the channel input signals that meets the power
constraint, and ∗ denotes the conjugate transpose. Next, s is
transmitted over the noisy channel, where both the additive
Gaussian white noise (AWGN) channel and Rayleigh fading
channels are considered in this paper. Specifically, for the
AWGN channel, the received signals can be expressed as

ŝ = s+ ϵ, (3)

where ŝ is the received signals, and ϵ ∈ CN (0, σ2I) denotes
the additional noise sample. In the case of Rayleigh fading
channels, the received signals ŝ is given by

ŝ = H · s+ ϵ, (4)

where H is the channel parameter and we assume that H can
be perfectly estimated through some pilot signals.

At the receiver, the semantic decoder will be used to
reconstruct the original image x̂ ∈ Rnc×nh×nw from the
corrupted ŝ according to

x̂ = Dθ2(ŝ), (5)

C
o
n
v
3
x
3

P
o
w
er
N
o
rm

C
o
n
v
3
x
3

Head conv

ResBlock

(a) Semantic encoder

C
o
n
v
3
x
3

+

C
o
n
v
4
x
4

Down-sampling module

C
o
n
v
3
x
3

C
o
n
v
3
x
3

+

C
o
n
v
4
x
4

Channel coding module
W
ireless
ch
an
n
el

C
o
n
v
5
x
5

C
o
n
v
3
x
3

ResBlock

C
o
n
v
3
x
3

+

P
ix
el
S
h
u
ff
le

Up-sampling module
Head conv

C
o
n
v
3
x
3

C
o
n
v
3
x
3

+

P
ix
el
S
h
u
ff
le

Input

Output

(b) Semantic decoder

Image-coding module

Down-sampling module

Up-sampling module

C
o
n
v
5
x
5

S
ig
m
o
id

C
o
n
v
3
x
3

Fig. 1: Network architecture of the semantic encoder and
decoder.

where Dθ2(·) denotes the semantic decoding operation pa-
rameterized by θ2. Subsequently, x̂ will be used to exert the
downstream task and obtain the inference results through the
following process

fx = Fbϕ1
(x̂), (6)

where Fbϕ1
(·) characterized by parameter ϕ1 denotes

the feature extraction operation performed by the back-
bone of the pretrained downstream model, and fx =
{f (1),f (2), · · ·f (C)} is the output feature map with C chan-
nels. The inference result ŷ can be obtained by passing fx

to the classifier Fclsϕ2
(·) with parameter ϕ2, which can be

expressed as
ŷ = Fclsϕ2

(fx). (7)

From the above description, we can see that the semantic
encoder and decoder play a key role in semantic communi-
cation. Moreover, preserving the semantic information in the
reconstructed image is crucial for the inference performance,
especially when the channel bandwidth is limited. Therefore,
the architecture and training procedure of the semantic encoder
and decoder require careful design.

IV. CL BASED SEMANTIC COMMUNICATION

In this section, we will introduce the proposed CL-based
semantic communication framework. Specifically, we will first
present the architecture of the semantic encoder and decoder,
and then provide the details of SemCC and its training
procedure.

A. Architecture of Semantic Encoder and Decoder

The architecture of the proposed semantic encoder and
decoder is presented in Fig. 1. The semantic encoder consists
of a 5×5 head convolution, two downsampling modules, and a
channel coding module. Each downsampling module contains
a basic block in ResNet [60] (we call it ResBlock) to capture
the spatial feature of the image, and a 4× 4 convolution with
stride 2 to downsample the image. The channel coding module
is used to mitigate channel corruption and output the k-dim
complex-valued channel input that satisfies the bandwidth and
power constraints.
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Fig. 2: Illustration of the proposed SemCC.

Furthermore, we adopt a symmetric architecture in the
decoder, which consists of a 5 × 5 head convolution, two
up-sampling modules, and an image coding module. In the
upsampling module, ResBlocks are also used as in the encoder,
and we adopt the pixel shuffle technology [61] to upsample
the image, as it can provide a more efficient computing
paradigm and better reconstruction performance compared to
the transposed convolution used in [28]. The image coding
module consists of a 3 × 3 convolution followed by the
sigmoid activated function to produce the reconstructed im-
age. Notably, the batch normalization and parametric rectified
linear unit (PReLU) activated function are followed with all
convolutions if not specified.

B. Semantic Contrastive Coding

The details of the proposed SemCC are shown in Fig. 2.
The process begins with the semantic encoding and decoding
for a typical image x in a training batch B, where we can
obtain the reconstructed x̂. We use this process to replace
the conventional data augmentation procedure in CL, and we
regard x̂ as an augmented sample of x. The backbone of pre-
trained downstream mode Fbϕ1

(·) is applied to x and x̂, which
generates the feature maps fx = Fbϕ1

(x) and fx̂ = Fbϕ1
(x̂),

respectively. Next, a fully connected projection network Pψ(·)
with learnable parameter ψ followed by a normalization op-
eration maps the features into the semantic space defined as a
hypersphere1, where samples are represented as tensors based
on their semantic information in this space. As mentioned
earlier, samples with similar semantic information are close
together, while those with different semantic information are
farther apart in this space.

1The output of the projection network is typically represented as tensors,
which can be straightforwardly normalized into a unit hypersphere. This
approach is widely used in the domain of representation learning, as it can
help improve training stability. More details about this can be found in [62].

During the training stage, Pψ(·) can be updated to enhance
the understanding of features, thereby learning the mapping
from features to semantics. Specifically, the projected results
of fx and fx̂ can be represented as qx = Pψ(fx) and
qx̂ = Pψ(fx̂), respectively, where qx is referred to as the
anchor, and qx̂ is called the positive. We can apply the widely
used cosine similarity between anchor and positive to define
the semantic distance between x and x̂ since it is suitable
for comparing the similarity between points in such high-
dimensional space. It is notable that when we focus on x̂,
we can regard it as the anchor, and x as the positive instead.

For the remaining samples m ∈ B/{x} within training
batch B, the same procedure will be followed. Specifically, we
can obtain the feature map fm = Fb(m) and fm̂ = Fb(m̂)
by feeding m and m̂ into the backbone of pretrained down-
stream model respectively. Then, we project them into the
semantic space using Pψ(·), where qm and qm̂ are referred
to as the negative of x and x̂, respectively. Similarly, the
semantic distance among them can be defined as the cosine
similarity between anchor and negative.

To simply the expression, we define B∗ as the augmented
version of B, which comprises both of the original samples
from B and the reconstructed ones, and |B∗| = 2|B| is
satisfied. We also define x∗ as the positive of x ∈ B∗. The
objective of SemCC is to minimize the semantic distance
between the original and reconstructed images while maxi-
mizing the semantic distance among the original image and
the irreverent images. Therefore, we can use the InfoNCE
function [13] to define the semantic contrastive loss, which
can be expressed as

Lsem = Ex∈B∗

{
− log

exp(qx · qx∗/τ)∑
m∈B∗/{x} exp(qx · qm/τ)

}
, (8)

where τ > 0 is the temperature coefficient used to smooth
the probability distribution. Next, we will introduce how to
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take into account the SemCC and semantic contrastive loss to
design the loss function and training procedure.

C. Loss Function and Training Procedure

Based on the SemCC, we design a two-stage training
strategy to optimize the semantic encoder and decoder. The
first stage is pre-training, where we use the SemCC approach
to train the weights of the encoder θ1, the decoder θ2, and
the projection network ψ simultaneously. Since it is difficult
to achieve a fast convergence speed when we only optimize
the semantic contrastive loss, we combine the semantic con-
trastive loss with the reconstructed loss between x and x̂,
since reducing the reconstructed loss can help improve the
convergence speed in the early training rounds. Specifically,
we use the Mean Square Error (MSE) function to evaluate
the reconstruction loss for the training batch B, which can be
expressed as

Lrec = Ex∈B

{
1

n
||x− x̂||22

}
. (9)

Then, the loss function in the first training stage can be
summarized as the linear combination, given by

L1 = α1Lrec + (1− α1)Lsem, (10)

where α1 ∈ [0, 1] is a hyperparameter that controls the tradeoff
between the two parts of the loss function. For example, we
can set α1 = k/n in the practical semantic communication
system. In this context, the system prioritizes the preservation
of semantic information over the reconstructed quality when
the bandwidth compression ratio is small. In contrast, as the
bandwidth compression ratio increases, the system shifts its
focus to preserving the reconstructed quality.

In the second training stage, we aim to further optimize the
performance of the semantic communication system by jointly
fine-tuning the encoder and decoder with a small learning rate
to achieve significant inference performance and reconstructed
image quality, especially when the bandwidth compression
ratio is low. The loss function of this stage can be expressed
as

L2 = α2Lrec + (1− α2)LTask, (11)

where α2 ∈ [0, 1] is a hyper-parameter like α1 and LTask is
the loss function of the downstream task. Specifically, when
the downstream task is a classification problem, the cross-
entropy function can be employed to model the loss, given
by

LTask = Ex∈B

{
− 1

Ncls

Ncls∑
i=1

yx,i log(ŷx,i)

}
, (12)

where yx,i and ŷx,i represent the ground-truth and the pre-
dicted probability of the i-th class, respectively, and notation
Ncls denotes the number of classes in the dataset. The whole
training procedure is summarized in Algorithm 1, where
Nepochs and NFine-tuning represent the number of training and
fine-tuning epochs, respectively.

Algorithm 1: SemCC Training Procedure

// Training Stage 1: Pre-training
1 for epoch← 1 to Nepochs do
2 Sample a batch B from the dataset;
3 The transmitter encodes each x ∈ B with Eθ1(·);
4 The receiver decodes and obtains x̂ with Dθ2(·);
5 Extract feature maps fx and fx̂ using Fbϕ1

(·) for
x ∈ B;

6 Project feature maps to semantic space using pψ(·);
7 Calculate reconstruction loss Lrec using (9);
8 Calculate semantic contrastive loss Lsem based on

(8);
9 Calculate combined loss L1 based on (10);

10 Update θ1, θ2, and ψ.
11 end
// Training Stage 2: Fine-tuning

12 for epoch← 1 to NFine-tuning do
13 Sample a batch B from the dataset;
14 The transmitter encodes each x ∈ B with Eθ1(·);
15 The receiver decodes and obtains x̂ with Dθ2(·);
16 Extract feature maps fx̂ using Fbϕ1

(·) for x̂;
17 Send the feature map to the classifier Fclsϕ2

(·);
18 Calculate reconstruction loss Lrec using (9);
19 Calculate loss of the downstream task LTask based

on (12);
20 Calculate combined loss L2 based on (11);
21 Update θ1 and θ2.
22 end

V. SEMANTIC RE-ENCODING WITH INACCESSIBLE
DOWNSTREAM MODEL

In this section, we will discuss a more general scenario
where the architecture and weights of the downstream network
are not accessible. Specifically, we will introduce an alternative
approach, namely SemRE, to address this issue, and then
present a soft update paradigm for the semantic encoder. After
that, we will provide the updated loss function and the training
procedure.

A. Semantic Re-encoding

When the weights of the pre-trained downstream model are
not accessible (i.e. the pre-trained downstream is black-box),
we cannot use its pre-trained backbone to extract features
and subsequently map them to the semantic space, as back-
propagation cannot be performed. A simple straightforward
solution is to initialize a DNN model randomly and pre-
train it using the label information. This pre-trained random
model can then guide the training of the proposed SemCC
or DeepSC. However, this approach introduces additional
system overhead and training latency. Moreover, if the chosen
architecture of the random DNN differs from that of the
pre-trained downstream model, it may result in performance
degradation. Therefore, we propose to use only the label
information to train the semantic encoder and decoder, which
provides a complementary technique between DeepSC and
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Fig. 3: Illustration of the proposed SemRE.

Lsem,R = Ex∈B∗

{
− 1

|Sx|
∑

x∗∈Sx

log
exp(qx · qx∗/τ)∑

m∈B∗/{Sx} exp(qx · qm/τ)

}
. (13)

the proposed SemCC. Specifically, we propose to use the
semantic encoder to re-encode the reconstructed image instead
of the feature extraction operation. This is motivated by
the concept of information bottleneck [63] in deep learning,
where the network acts as a bottleneck and the only useful
information from the input is agreed to pass through itself.
In other words, the unimportant information is filtered out in
the process. In essence, the ideal semantic encoder should
play such a role, i.e., only the semantic information can
be retained after semantic encoding, and the task-irrelevant
information is removed. Therefore, when the reconstructed
sample at the receiver is fed back to the semantic encoder,
the output should resemble the previous encoding results
for an ideal semantic communication system, which can be
characterized by idempotence in semantic communication, and
ensures consistency in semantic information across encoding
and decoding stages.

We then provide a detailed description of the SemRE and
the modification of the semantic contrastive loss. As shown in
Fig. 3, in contrast to SemCC, where both the original x and
x̂ are fed into the backbone of the pre-trained downstream
model, the proposed SemRE approach only needs to perform
re-encoding at the receiver, since we have already obtained
the encoding results at the sender. Let s̃r = Eθr1 (x̂) denote
the re-encoding operation at the receiver, where θr1 represents
the parameters of the re-encoder. In particular, θr1 is updated
based on θ1 and we will introduce how this update is achieved.
After that, the power normalization in (2) is used to obtain the
results sr.

Next, we can use s and sr to perform CL. Specifically,
similar to SemCC, SemRE still uses projection meshes. For

simplicity, we use qx and qx∗ to denote the anchor and
positive projection results. To obtain the negative, we select
samples from the same batch and use cosine similarity to
evaluate the semantic distance. It is important to note that
we do not consider all remaining samples within the same
batch as negative, because the ability of semantic extraction
in this scenario is limited and we cannot obtain rich and
fine-grained semantic information due to the lack of the pre-
trained downstream model. Blindly pulling samples away from
each other within the same class would degrade the system
performance. In other words, it is advisable to consider the
semantic similarities between different samples belonging to
the same class. For these reasons, we adopt a supervised
method in [17]. Specifically, the label of each sample is used to
facilitate CL, and we define Sx as the positive set containing
samples belonging to the same class with x. Thus, we can
derive the semantic contrastive loss of the SemRE approach
as (13). Then we can use (13) to replace (10) to perform the
gradient descent.

B. Soft Update Approach

In the training process of the proposed SemRE approach,
the semantic encoder plays a key role. It first extracts the
semantic information and encodes it before transmission.
Then, at the receiver, it extracts the semantic information again
to evaluate the quality of the received semantic information.
However, training such a semantic encoder is challenging in
practice. Because, it is a self-guided process, i.e., the semantic
encoder evaluates its own performance and the weights of the
semantic encoder are also updated dynamically. This makes
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Algorithm 2: Semantic Re-Coding Training Procedure

1 for epoch← 1 to Nepochs do
2 Sample a batch B from the dataset;
3 The transmitter encodes each x ∈ B with Eθ1(·);
4 The receiver decodes and obtains x̂ with Dθ2(·);
5 The receiver re-encodes x̂ with Eθr1 (·);
6 Project the encoded results from both of the

transmitter and receiver to semantic space using
pψ(·);

7 Calculate reconstruction loss Lrec based on (9);
8 Calculate semantic contrastive loss Lsem,R based

on (13);
9 Calculate combined loss L1 based on (10);

10 Update θ1, θ2 and ψ using SGD;
11 if epoch mod Nupdate = 0 then
12 Update θr1 ← βθr1 + (1− β)θ1
13 end
14 end

the semantic encoder at the receiver fail to provide stable
evaluation, which complicates the optimization of the entire
process.

Inspired by weight update strategies in deep reinforcement
learning, as exemplified by deep Q-Networks (DQN) [64] and
deep deterministic policy gradients (DDPG) [65], we propose
a soft update approach for the semantic encoder to address
these challenges. This approach decouples the evaluation and
update steps in the training process. Specifically, the semantic
encoder at the receiver does not update its weights after each
training batch, as it does at the transmitter. Instead, its weights
are updated periodically to achieve better training stability. The
detailed soft-update approach can be expressed as

θr1 ← βθr1 + (1− β)θ1, (14)

where β ∈ [0, 1] is a hyper-parameter which controls the
update magnitude. We finally summarize the whole training
process of SemRE as shown in Algorithm 2, where Nupdate is
the update interval.

VI. SIMULATIONS

A. Simulations Settings

To verify the effectiveness of the proposed framework, we
conduct experiments on CIFAR-10, which contains 60,000
32×32 color images divided into 10 classes. The training set
contains 50,000 images, while the test set contains 10,000
images. A pre-trained ResNet-20 [60] is used as the backbone
and classifier of the downstream model for inference2.

The projection network adopts a two-layer fully connected
structure with an output dimension of 32. The number of
training epochs for the pre-training and fine-tuning is set to
300 and 50, respectively, with a batch size of 128. We also
use the Adam optimizer with a learning rate of 0.001 for the
first pre-training stage and 0.0001 for the second fine-tuning

2The pre-trained weights can be found at https://github.com/chenyaofo/
pytorch-cifar-models.

stage. These learning rates are adjusted every 50 epochs with
a decay factor of 0.5.

For the network environment, we set the transmit power
to unity and the transmit SNR to 20dB and 5dB for normal
and noisy environments, respectively. In addition, we assume
that the receiver can estimate the channel parameters perfectly
in the case of Rayleigh channel. We compared the proposed
approaches with the advanced DL-based semantic communi-
cation approaches, which are listed as follows,

• SemCC: The proposed CL-based semantic communica-
tion approach, where the pre-trained backbone of the
downstream task is used in the training process.

• SemRE: The proposed SemRE strategy and no pre-
trained backbone is adopted in this case.

• DeepJSCC [28]: Deep learning-based source-channel
joint coding that maps the original input to the channel
input through the structure of an autoencoder.

• DeepSC [12]: The SOTA deep learning-based semantic
communication framework to support downstream in-
ference task. DeepSC trains the semantic encoder and
decoder with both semantic loss provided by the whole
pre-trained ResNet-20 and observation loss in (11) to
achieve efficient semantic information transmission. Note
that the hyper-parameter α2 is set to the same as it in the
fine-tuning stage of the proposed approaches.

For fair comparison, the architectures of the encoders and
decoders in these approaches are set to be the same, and the
network environment settings are kept consistent across all
experiments, if not specified.

Moreover, we also compare the performance of the proposed
approaches with conventional digital communication using
separate source and channel coding under the same bandwidth
compression ratio. For the source coding, we leverage the
SOTA image compression algorithm named better portable
graphics (BPG)3, which is based on the intra-frame encoding
approach of the high-efficiency video coding (HEVC, aka
H.265) standard. As for the channel coding, we integrate
LDPC code configured according to the IEEE 802.16E stan-
dard (Mobile WIMAX), where the block length of 2304 and
rates of 1/2, 2/3 and 3/4 are adopted in our simulations. In
addition, we use the quadrature amplitude modulation (QAM)
with orders of 4, 16 and 64. Notably, we only report the results
of the optimal combination of LDPC rates and modulation
schemes for simplicity.

In further, we present the upper bound performance of the
digital communication approach, denoted as BPG+Capacity,
which realizes capacity-achieving transmission based on Shan-
non theorem for a given transmit SNR, with the assumption
of error-free transmission. Hence, practical digital transmission
schemes incorporating channel coding and modulation can not
outperform this upper bound.

B. Effectiveness

Fig. 4 compares the accuracy performance of DeepJSCC,
DeepSC, the conventional digital communication and the

3https://bellard.org/bpg/.

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models
https://bellard.org/bpg/.
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Fig. 4: Test Accuracy versus the bandwidth compression ratio
under AWGN channel, where SNR is 20dB.

Fig. 5: PSNR versus the bandwidth compression ratio under
AWGN channel, where SNR is 20dB.

proposed approaches including SemCC and SemRE under
AWGN channel where the SNR is set to 20dB and the
bandwidth compression ratio k/n varies from 1/24 to 1/2.5.
For the digital communication system, the combination of
3/4 rate LDPC and 64QAM is used. This figure clearly
shows that the proposed SemCC consistently outperforms
the compared ones in terms of accuracy. In particular, when
the compression ratio is 1/2.5, all approaches can transmit
rich semantic information to support the downstream task,
resulting in high accuracy levels of about 92.3%. As the
bandwidth compression ratio decreases, the proposed SemCC
still maintains a comparable accuracy performance. For ex-

Fig. 6: Test Accuracy versus the bandwidth compression ratio
under AWGN channel, where SNR is 5dB.

Fig. 7: PSNR versus the bandwidth compression ratio under
AWGN channel, where SNR is 5dB.

ample, the proposed SemCC can achieve accuracy levels of
89.85% and 88.81% at bandwidth compression ratios of 1/12
and 1/24, respectively, which outperforms DeepSC by about
2% at the corresponding bandwidth compression ratios and
also shows an accuracy gain of up to 40% and 26% over
DeepJSCC and BPG+Capcacity, respectively. In addition, the
SemRE approach is also superior to DeepJSCC, achieving an
accuracy gain of up to 25% at a bandwidth compression ratio
of 1/24. It is important to note that both approaches do not
use a pre-trained backbone during the training process. These
results suggest that the proposed approaches can effectively
extract semantic information to meet the requirements of the
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Fig. 8: Test accuracy versus the bandwidth compression ratio
under Rayleigh fading channels, where SNR is 20dB.

Fig. 9: PSNR versus the bandwidth compression ratio under
Rayleigh fading channels, where SNR is 20dB.

downstream task and remove irrelevant redundant information
to ensure that the semantic information can be successfully
transmitted. This is particularly beneficial in scenarios where
the channel bandwidth is limited.

Fig. 5 presents the peak signal-to-noise ratio (PSNR) com-
parison of the proposed SemCC and SemRE and the four
complementary approaches, where the SNR is set to 20dB
and the bandwidth compression ratio varies from 1/24 to 1/2.5.
For the digital communication system, the combination of 3/4
rate LDPC and 64QAM is used. As shown in the figure, we
can see that as the bandwidth compression ratio increases, the
PSNRs of all the approaches improve and the conventional

Fig. 10: Test Accuracy versus the bandwidth compression ratio
under Rayleigh fading channels, where SNR is 5dB.

Fig. 11: PSNR versus the bandwidth compression ratio under
Rayleigh fading channels, where SNR is 5dB.

approach performs best when the bandwidth compression ratio
is larger than 1/3. Although SemCC and SemRE sacrifice
some image quality to prioritize semantic information when
the bandwidth compression ratio is low, they can quickly
catch up with the PSNR of DeepJSCC at higher compression
ratios. Specifically, the proposed SemCC achieves a PSNR of
38.31dB, which is close to the 39.07dB of DeepJSCC, and out-
performs DeepSC with 37.11dB when the bandwidth compres-
sion ratio is 1/2.5. Moreover, the SemRE approach achieves
the same PSNR performance as the DeepJSCC when the
bandwidth compression ratio is greater than 1/6. These results
indicate that the proposed SemCC and SemRE approaches
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Fig. 12: Test Accuracy on CIFAR-10 versus PSNR under
AWGN channel with SNR of 5dB, where the bandwidth
compression ratio is set to 1/24.

Fig. 13: Test Accuracy on CIFAR-10 versus test SNR un-
der Rayleigh channel. The semantic encoder and decoder
are trained at an SNR of 5dB, and the high-performance
RepVGG16 is utilized as the downstream model.

can prioritize the transmission of semantic information over
irrelevant background information to ensure the performance
of the downstream task in bandwidth-limited scenarios, and
meanwhile transmit enough background information to obtain
good image quality when the bandwidth is not a bottleneck.
These results further demonstrate the effectiveness of the
proposed approaches.

Fig. 6 and Fig. 7 show the performance comparison of
several approaches under low SNR in terms of accuracy

Fig. 14: Test Accuracy on CIFAR-10 versus test SNR under
Rayleigh channel. The semantic encoder and decoder are
trained at an SNR of 5dB, and the lightweight ShuffleNet-
V2 is utilized as the downstream model.

and PSNR, respectively. Specifically, both figures consider
a low SNR of 5dB, and the bandwidth compression ratio
varies from 1/24 to 1/2.5. Moreover, 3/4 rate LDPC and
4QAM is used in this case. From Fig. 6, we can see that the
proposed SemCC still shows superiority in terms of accuracy
compared to the competitive ones, indicating its robustness in
low SNR scenarios. From Fig. 7, we can find that the proposed
approaches can adaptively sacrifice the global information
to obtain comparable semantic performance when the band-
width compression ratio is low, and meanwhilebtain sufficient
reconstructed quality in terms of PSNR as the bandwidth
compression ratio increases. These results in both figures
further verify the effectiveness and robustness of the proposed
approaches in low SNR scenarios.

To further evaluate the performance of several approaches,
we perform a comparison under Rayleigh fading channels.
Fig. 8 shows the accuracy performance where the SNR is 20dB
and the bandwidth compression ranges from 1/24 to 1/2.5. For
the digital communication system, we utilize a combination
of 2/3 rate LDPC and 16QAM. From this figure, we can see
that all approaches experience performance degradation under
Rayleigh fading channels compared to the AWGN channel.
However, the proposed SemCC still achieves a leading level
of accuracy. Specifically, at a bandwidth compression ratio of
1/2.5, the proposed SemCC achieves an accuracy of 91.21%,
which is approximately 1% higher than DeepJSCC and 0.3%
higher than DeepSC. As the bandwidth compression ratio
decreases, the proposed SemCC demonstrates its adaptability
to Rayleigh fading channels and still achieves an accuracy of
about 90% when the bandwidth compression ratio ranges from
1/4 to 1/24, which achieves accuracy gains of up to 46.08%
and 2.62% over DeepJSCC and DeepSC, respectively, and
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TABLE I: Ablation study on AWGN channels (SNR=5dB)

k/n = 1/24 k/n = 1/12 k/n = 1/6

Metrics Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL

ACC 87.13 83.48 (-3.65) 86.78 (-0.26) 88.68 88.16 (-0.52) 86.87 (-1.81) 89.32 89.18 (-0.14) 88.85 (-0.47)
PSNR (dB) 15.87 16.00 (+0.13) 11.86 (-4.01) 18.99 18.97 (-0.02) 13.83 (-5.16) 23.60 23.18 (-0.42) 21.28 (-2.32)

TABLE II: Ablation study on Rayleigh fading channels (SNR=5dB)

k/n = 1/24 k/n = 1/12 k/n = 1/6

Metrics Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL

ACC 77.65 71.00 (-6.65) 65.22 (-12.43) 79.86 76.99 (-2.87) 73.02 (-6.84) 80.14 78.79 (-1.35) 77.28 (-2.86)
PSNR (dB) 14.87 14.94 (+0.07) 11.41 (-3.46) 17.04 16.94 (-0.10) 14.02 (-3.02) 20.65 20.48 (-0.17) 17.89 (-2.76)

even outperforms the upper bound performance of the digital
communication approach. Moreover, the SemRE also shows
its superiority in exploiting the Rayleigh fading characteris-
tics compared to DeepJSCC and BPG+Capacity, achieving
accuracy gains of up to 30.31% and 10.27%, respectively.
These results further demonstrate the effectiveness of the
proposed SemCC and SemRE approaches under Rayleigh
fading channels.

Fig. 9 shows the PSNR comparison under Rayleigh fading
channels with an SNR of 20dB. For the digital communication
system, a combination of 2/3 rate LDPC and 16QAM is
used. From this figure, we can see that both the proposed
SemCC and SemRE approaches prioritize the transmission
of semantic information at low bandwidth compression ratios
while preserving enough detail to improve image quality as the
bandwidth compression ratios increase. It is noteworthy that
the SemRE approach achieves a superior PSNR performance
compared to DeepJSCC when the bandwidth compression
ratio is greater than 1/6, and the proposed SemCC also outper-
forms DeepJSCC and the conventional digital communication
approach when the bandwidth compression ratio is 1/2.5. This
can be attributed to the introduced CL and the approach
of replacing the data augmentation with a practical wireless
channel, which helps to mitigate the effect of Rayleigh fading
channels. In addition, the presence of rich semantic informa-
tion plays a crucial role in image reconstruction at the receiver.

Fig. 10 and Fig. 11 show the performance comparison
under Rayleigh fading, and the SNR is set to 5dB. In
this scenario, the characteristics of fading and channel noise
pose even greater challenges to the semantic communication
system. From Fig. 10, we can see that the test accuracy
of all approaches deteriorates significantly. Compared to the
competing approaches, the accuracy gains of the proposed
SemCC increase with a smaller bandwidth compression ratio,
and it outperforms DeepSC and DeepJSCC by up to 18.65%
and 57%, respectively. Moving to Fig. 11, we find that the
SemRE approach still achieves superior image quality in terms
of PSNR compared to other approaches when the bandwidth
compression ratio is larger than 1/6. It achieves a gain of up to
1.5 dB over DeepJSCC. Moreover, the proposed SemCC also
outperforms DeepJSCC when the bandwidth compression ratio
is 1/2.5. These results further demonstrate the effectiveness
of the proposed approaches in overcoming the challenges of

channel environments and successfully balancing the semantic
information and image details according to the bandwidth
compression ratio.

Next, we vary the trade-off parameters in (10) and (11)
across a broad range to adjust the PSNR value and observe the
corresponding performance in terms of accuracy under AWGN
channels, where the BCR is set to 1/24 and SNR is set to 5dB.
As shown in Fig. 12, the test accuracy of the proposed SemCC
and DeepSC decreases as the PSNR increases, which indicates
that both the proposed SemCC and DeepSC can balance the
trade-off between the semantic information and image quality.
However, the test accuracy of DeepSC is more sensitive to the
trade-off parameter, while the proposed SemCC can maintain
a higher accuracy level across a broad range of trade-off
parameters and the corresponding PSNR values. Specifically,
the proposed SemCC achieves the test accuracy of 87.13%
and 86.71% when the PSNR is about 15.87dB and 16.38dB,
respectively, while DeepSC achieves the same-level accuracy
with a lower PSNR value of 12-13dB. These results further
demonstrate the effectiveness of the proposed SemCC in the
trade-off between semantic information and image quality.

We also conduct ablation studies, as shown in Table I and
Table II. We consider our proposed SemCC with two-stage
training as the baseline. We then remove the first stage of
CL pre-training (denoted as w/o. CL) and the second stage of
fine-tuning (denoted as w/o. FT), respectively, to evaluate their
individual impact. It is notable that for w/o. CL, we employ an
initial learning rate of 1×10−3 and then reduce it by a factor of
0.1 every 80 epochs to train the semantic encoder and decoder
from scratch, which can ensure the training performance. In
fact, SemCC degrades to DeepSC in this case. Specifically,
Table I provides the performance comparison, where AWGN
channel with SNR of 5dB is set and the bandwidth com-
pression k/n is set to 1/24, 1/12 and 1/6, respectively. From
this table, we can find that the baseline achieves the highest
accuracy and PSNR, while the baseline without fine-tuning can
still outperform the one without CL pre-training in most cases.
These results indicate that the gains of the proposed SemCC
mainly come from the CL pre-training, and the fine-tuning
also contributes to improved accuracy performance, especially
when the bandwidth compression ratio is 1/24.

Similar results of ablation studies on Rayleigh fading chan-
nels are presented in Table II, where SNR is set to 5dB. From
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Original DeepJSCC

PSNR|MS-SSIM 20.23dB|0.83

DeepSC SemCC

16.85dB|0.68 19.83dB|0.82

Original DeepJSCC

PSNR|MS-SSIM 21.11dB|0.89

DeepSC SemCC

17.925dB|0.73 21.21dB|0.88

Fig. 15: Visual comparison of the reconstructed image under AWGN channel with an SNR of 20dB and a bandwidth compression
ratio of 1/48. The proposed approaches effectively preserves the semantic information of the colorful macaws and removes the
irrelevant background.

this table, we can observe that a larger gain is obtained by
the CL pre-training over training from scratch compared to
that under the AWGN channel, which further demonstrates the
effectiveness of the proposed CL-based pre-training, as well
as the benefits of fine-tuning.

C. Robustness

To verify the robustness of the proposed SemCC and
SemRE approaches, we consider a more challenging scenario
where there is a mismatch between the training SNR and
the test SNR. In addition, the model architecture for the
downstream task is different from the one used in the training
process. In particular, we consider the state-of-the-art (SoTA)
RepVGG16 [66] and the lightweight ShuffleNet [67] as the
downstream models. RepVGG16 and ShuffleNet are more
powerful and less powerful, respectively, compared to the
ResNet-20 used in the training phase. Therefore, we can eval-
uate the robustness of the proposed approaches by assessing
whether the preserved semantic information is general enough
to work properly with a more powerful pre-trained model
downstream and whether it is sufficient and appropriate for
the lightweight model. We also provide the performance of
the conventional digital communication system under the same
condition, where we use the serval combination of LDPC rates
and modulation schemes to achieve the best performance.

In Fig. 13, we present the test accuracy comparison un-
der Rayleigh fading channels for different SNRs, where the
semantic encoder and the semantic decoder are both trained
at the SNR of 5dB, and the bandwidth ratio is set to 1/6.
The model architecture for the downstream task is ResNet20
during the training phase, while in the test phase, we use
RepVGG16 [66]. This change may indicate an upgrade in the
GPU device of the receiver, which allows the use of a more
powerful deep model. From this figure, we can observe that

despite the mismatched SNR and the use of a more complex
downstream model, the proposed approaches still demonstrate
competitive test accuracy levels by providing enough semantic
information to the downstream model and the ability to protect
it from fading and noise. It is also important to note that
the proposed SemRE, which utilizes only label information,
demonstrates better performance compared to DeepSC when
the downstream model is unknown. These results suggest that
our semantic communication system maintains its robustness
in the face of real-world variations.

In Fig. 14, we continue to evaluate the test accuracy under
Rayleigh fading channels, where we employ a lightweight
model architecture. Specifically, ShuffleNet [67] is employed
for the downstream model, and the bandwidth compression
ratio is set to 1/12 to simulate computational resource and
bandwidth constraints. In this scenario, we observe a signifi-
cant degradation in the accuracy performance of DeepSC, as
it primarily emphasizes specific semantic information required
by the pre-trained backbone and shows its sensitivity to dif-
ferent model architectures of the downstream task. In contrast,
our proposed approaches not only depend on the output
of the pre-trained backbone, but also take into account the
intrinsic relationship among various samples, which provides
more general semantic information. As a result, the proposed
approaches maintain competitive and robust test accuracy and
achieve gains of up to 40% over DeepSC. In further, the
proposed approaches can effectively mitigate the cliff effect
under various channel conditions. These results highlight the
robustness of our semantic communication system in scenarios
with limited computational and bandwidth resources.

D. Visualization

We also provide visual comparisons of different approaches
using the Kodak dataset in Fig. 15, where the encoder and
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decoder are trained on the STL10 dataset, the SNR is 20dB,
and the bandwidth compression ratio is 1/48. From this figure,
we can find that the quality of the reconstructed image
for DeepJSCC, DeepSC, and the proposed SemCC all get
deteriorated in this large compression ratio, but the proposed
SemCC can effectively preserve the semantic information. For
example, the proposed SemCC effectively preserves the se-
mantic information of the colorful macaws, people, and rafters,
and removes the irrelevant background. This is particularly
beneficial in scenarios where the channel bandwidth is limited
and can explain the reasons for the superior performance
of the proposed SemCC in the downstream task. On the
other hand, DeepJSCC treats all information as important and
attempts to reconstruct the background, leading to the loss
of semantic information about colorful macaws and rafters.
Although DeepSC can extract textual information, it still
fails to preserve the colorful macaws and rafters, significantly
deteriorating image quality. These results further demonstrate
the effectiveness of the proposed approaches in preserving
semantic information and removing irrelevant background
information.

VII. CONCLUSION

In this paper, we investigated a CL-based semantic com-
munication system. Our contribution was to introduce the
concept of semantic contrastive loss, which provides a more
reasonable evaluation of semantic-level aspects during the
training process. Moreover, we modified the CL procedure
by replacing the traditional data augmentation with a practical
wireless channel and proposed the SemCC approach, which
allows us to comprehensively exploit the impact of the channel
on the transmission of semantic information. We also proposed
the SemRE approach, which uses a copy of the semantic
encoder to guide the whole training process, to address the
problem of an inaccessible downstream model. Further, we
designed training procedures for SemCC and SemRE, respec-
tively, which achieved a good trade-off between preserving
semantic information and retaining intricate details. Finally,
we conducted simulations under various conditions, including
different bandwidth compression ratios, SNRs, and down-
stream model configurations, to demonstrate the effectiveness
and robustness of the proposed approaches.
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